

External Attachment at NAKUJA ROCKET PROJECT

Felix Gateru lan Kibandi Jeff Mboya Mike Kimani

Rodney Osodo Sammy Oina

Freshly minted rocket scientists

Goals and Activities

Develop a rocket Nose Cone Develop and launch of N1 motor motor Payload Rocket to an apogee of Parachute Shroud Lines 50 meters Body Tube Record flight data Shock Cord Glenn Research Flight of a Model Rocket Wadding Center Launch Lug Develop the Thrust Ring-Stabilizer airframe Engine Fin Coasting Flight Election Ćharge Powered Ascent Slow Launch and recover Descent the rocket Launch Recovery

Timeline

Achievements

Developed and launched N1 rocket to 32 meters (about the height of a 10 storey building)

What was Learned

AVIONICS Goals and Activities

- Log flight data velocity, acceleration and altitude.
- Detect apogee
- Flight control Initialize recovery
- Build flight computer

What was learnt

<u>Hardware</u>

PCB schematic and board design

<u>Software</u>

Filtering sensor noise using Kalman filter

PCB SCHEMATIC

PCB Design and Etching

There were 5 iterative designs for the flight computer.

Each design had improvements in various forms

Kalman filter

 $\frac{Time \ update \ (prediction)}{State \ prediction : X_{pred} = A \ X_{k-1} + B \ U_k}$ Covariance prediction : $P_{pred} = A \ P_{k-1} \ A^T + Q$

 $\frac{Measurement\ update\ (correction)}{Innovation\ :\ \hat{y}\ =\ Z_k\ -\ H\ X_{pred}}$ $Innovation\ covariance\ :\ S_k\ =\ H\ P_{pred}\ H^T\ +\ R$ $Kalman\ gain\ :\ K_k\ =\ P_{pred}\ H^T\ S^{-1}$ $State\ update\ :\ X_k\ =\ X_{pred}\ +\ K_k\ \hat{y}$ $Covarinace\ update\ :\ P_k\ =\ (1\ -\ K_k\ H\)\ P_{pred}$

Kalman filter was applied for more sensible flight data.

Challenges

• Difficult to carry out proper preliminary apogee detection tests

Overcome this by using a water rocket

AIRFRAME Goals and Activities

- Develop airframe with 450mm height
- Work on parachute and pyrotechnics
- Build the fuselage

Model Rocket

Parachute Ejection Mechanism

Achievements (airframe)

- Tested parachute ejection
- Integrated all the subdivisions
- Flew 32m high

What was learnt (airframe)

- Additive manufacturing (104.6 hr)
- Computational fluid dynamics
- Finite element analysis

Challenges (airframe)

- Lines of weakness after fabricating the model rocket
- Apogee detection for low altitude model rocket

Launch Pad and Payload Camera Goals and activities

Provide a cheap, light-weight, stable and portable launchpad Visualize flight

Purchase and assembly of the launch pad base

Assembling and strengthening the launch pad

Programming the payload camera microcomputer

Payload camera

Launchpad

Light-weight, portable and stable PVC launch-pad base.

Aluminium blast pad and steel launch rod

What was Achieved

- Provided a stable, light and portable platform for launching our rocket
- Conducted 2 successful launches with the launchpad.
- Guided the rocket for the first few feet

What was Learnt

- Microcomputer python programming (Raspberry pi zero)
- 3D printing
- Computer Aided Design (Autodesk Inventor)

Payload camera holder design and assembly

Challenges

Unavailable pvc fittings Short launch rod

Longer Launch Rod

45 elbow replaced by Y elbow fitting

Test Stand

Expected Goals and Activities

- Design test stand
- Fabricate the test stand
- Design electronic thrust measurement circuit
- Test the rocket motor

Test Stand Design and Fabrication

V1.2 (steel frame; remote ignition; acrylic shield)

V1.3 (4 load cells; metal caged; LED indicator; robust base plate;remote ignition)

Thrust Measurement Circuit

Static Fire Test Videos

v1.1

v1.2

v1.3

Achievements

- Conducted 6 successful static fire tests.
- Obtained thrust curves.

Time (s)

What was learnt

- Finite Element Analysis
- Additive Manufacturing
- Engineering design

PROPULSION

The Team

<u>Goals</u>

- Build a working solid propellant rocket motor for the N1 rocket
- Maintain safety as well as create safety guidelines for future development

Activities

- 1. Research on solid motor rockets
- 2. Design of motor and ignition system
- 3. Testing of propulsion systems
- 4. Integrating with the rest of the rocket
- 5. Launching

The Propellants

A propellant is a mixture of oxidizer and fuel that burns to produce thrust. We settled on three propellants each using potassium nitrate as oxidizer:

Iron oxide(catalyst)

Potassium Nitrate

Sucrose

Grain

Casting

Procedure:

- 1. Measuring out KNO3 sugar and iron III oxide
- 2. Mixing
- 3. Grinding
- 4. Heating the pan
- 5. Adding the mixture
- 6. Stirring until fully molten
- 7. Pouring into mould
- 8. Coring to create a combustion chamber

The Nozzle

Above is a typical de laval nozzle it has a converging and diverging side Our first iteration used grout to make the nozzle

Nozzle made using hydraulic cement

<u>V1 to V10</u>

Simulated Thrust and Actual Thrust

What was learnt

- 1. Additive manufacturing
- 2. Thermodynamic analysis
- 3. Material Analysis
- 4. Nozzle theory

Challenges

• A major challenge encountered was sourcing high strength pvc locally we had to order it to be manufactured.

Conclusion

Way forward

- Development and
 Launch of high powered
 N2 rocket with active
 control
- Design of N3 Liquid
 Propellant rocket
- Development of nano-satellite

Where to find us

https://nakujaproject.com/

